Modes of Propagation on 6 Meters

Carl Luetzelschwab K9LA e-mail: <u>k9la@arrl.net</u> website: <u>https://k9la.us</u>

Heathkit Sixer HW-29A

More Vintage 6m Rigs

Gonset 6m Communicator

Heathkit SB-110

Heathkit Shawnee HW-10

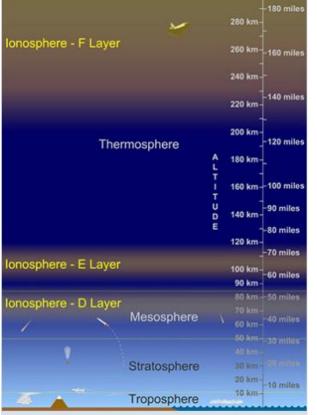
Heathkit Seneca VHF-1

Knight TR-106 (W9XT e-mail)

If you've used one of these or the Sixer, I'd love to hear your story – k9la@arrl.net

Agenda

- Fundamentals of the atmosphere and the ionosphere
- List of 6m modes
 - I think I caught them all or at least most of them ③
- Review of all these modes
- Antenna considerations
 - Is there an optimum height?
- Cycle 25 status
 - How fast is Cycle 25 rising?
- References
 - Certainly not all of them, but a good start (I hope)


Fundamentals of the Atmosphere and the Ionosphere

How Does 50 MHz RF Get Back to Earth?

- Refraction
 - In the atmosphere
 - In the ionosphere
 - Amount of refraction (bending) inversely proportional to (frequency)²
 - The higher the frequency, the less the refraction higher frequency needs more electrons
- Reflection in the ionosphere
 - Conductivity (σ) of an electron density is 4.5E-9

- Many electrons needed for even poor conductivity at 50 MHz most likely to occur with sporadic-E or a major auroral event
- Scatter
 - In the atmosphere
 - In the ionosphere
 - Results in more loss

Refraction in the Atmosphere/Ionosphere

Regions of the ionosphere, showing the D, E and F layers Credit: UCAR Center for Science Education staff

(Randy Russell)

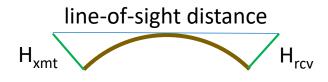

- Index of refraction of the atmosphere with no refraction (no bending) is 1.0 and an increasing number increases the refraction
 - Depends on pressure, temperature, water vapor
- Index of refraction of the ionosphere with no refraction is 1.0 and a decreasing number increases the refraction
 - Depends on electron density
 - The ionosphere has two indices of refraction one for the ordinary wave and one for the extraordinary wave (but at 50 MHz, pretty much the same)
 - Due to the ionosphere being immersed in a magnetic field

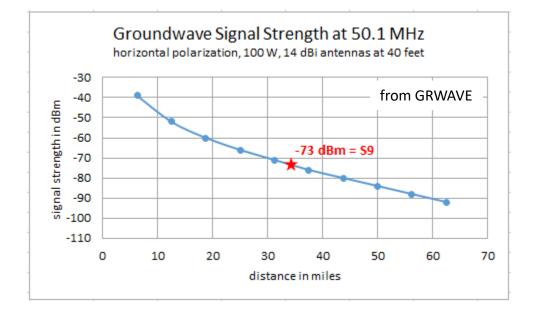
Layers of the Atmosphere/Ionosphere

- We usually think of refraction from only one layer
- Each layer could bend the RF a bit
- What's important is the grazing angle on the highest layer

the smaller the α , the higher the MUF

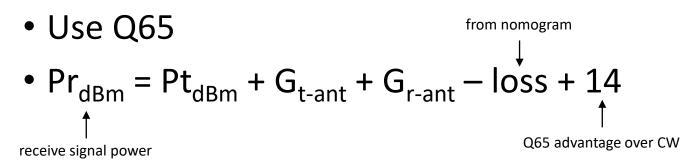
List of 6m Modes


6m Modes


NON-ATMOSPHERIC AND NON-IONOSPHERIC	ATMOSPHERIC	IONOSPHERIC	EXTRATERRESTRIAL
line-of-sight ground wave	tropospheric scatter tropospheric ducting SSSP meteor scatter	aurora/auroral-E ionospheric scatter E hops sporadic-E F2 hops TEP Ducting/chordal hops combos of E & F hops above-the-MUF skewed paths	moon bounce

Review of the Modes

Line-of-Sight and Groundwave


- Line-of-sight
 - Distance = 1.415 $\sqrt{H_{xmt}}$ + 1.415 $\sqrt{H_{rcv}}$
 - Distance in miles, H in feet
 - Antennas at 40 feet >> 18 miles
 - Includes atmospheric refraction
 - Does not include obstructions to horizon
- Groundwave
 - From the CCIR program GRWAVE
 - CCIR is International Consultative Committee for Radiocommunications (part of the ITU)
 - 60 miles or so
 - I don't know how believable these results are

Tropospheric Scatter

- Nomogram for estimating loss
 - Dean O. Morgan W2NNT, Tropospheric Scatter Techniques for the Amateur, QST, March 1957
 - Isotropic antennas


```
Example: 1kW and 14 dBi antennas gives 1000 miles with Pr = -126.2 dBm
```

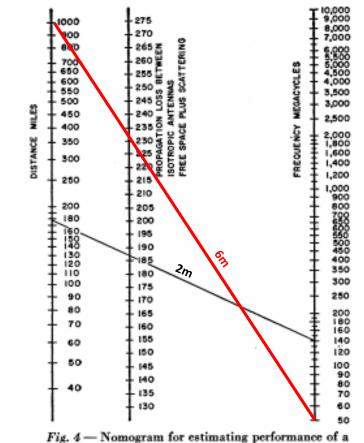
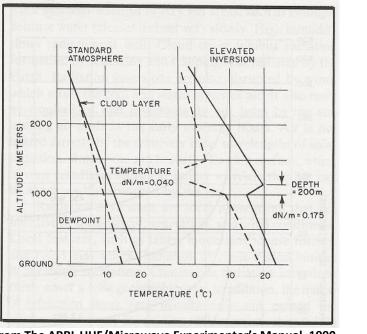
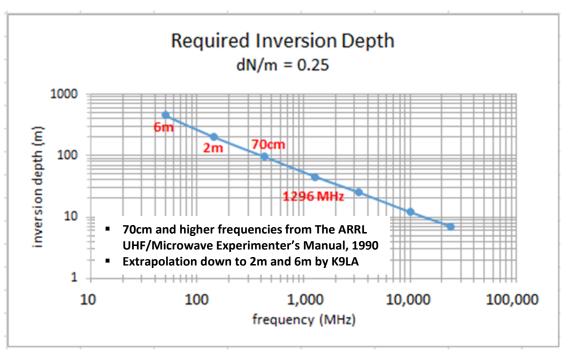
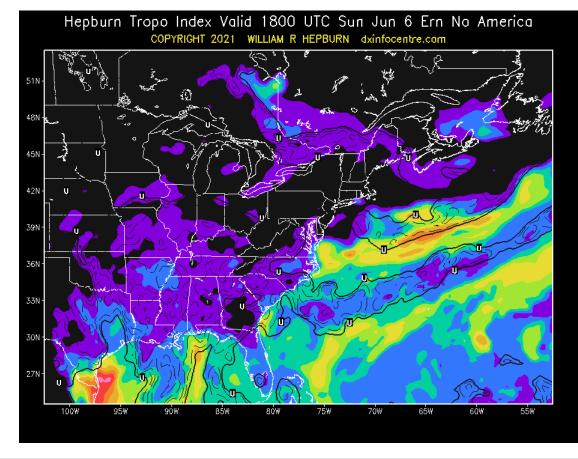




Fig. 4 — Nomogram for estimating performance of a scatter circuit. Slanting line represents example given in text.

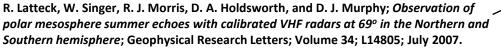
Tropospheric Ducting

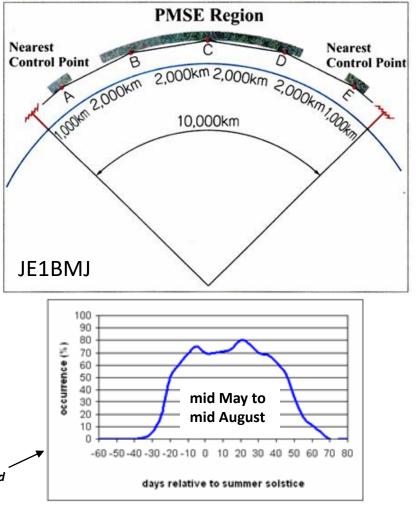
- Typical inversion depth is 200 meters
- Inversion depth needed for 6m is around 450 km per plot below
- K7CW (WA) heard long-lasting opening that extended from Alaska to Southern CA in the June VHF Contest in the early 1970s
 - Believes it was tropospheric ducting



Hepburn Tropo Maps

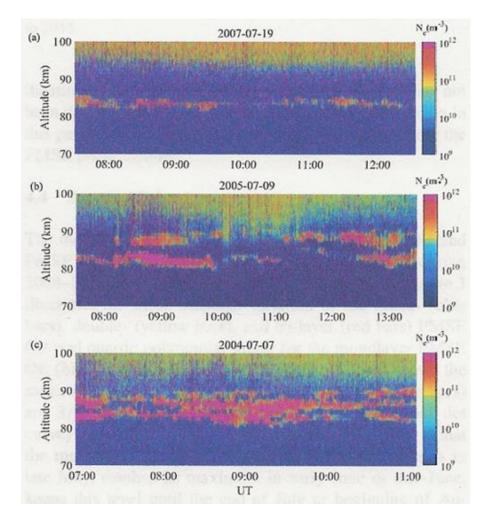
- Predictions for tropospheric ducting
- How accurate are these?


https://www.dxinfocentre.com/tropo.html



0	1	2	3	4	5	6	7	8	9	10+
NIL	MARGINAL	FAIR	MODERATE	HIGH	STRONG	VERY STRONG	INTENSE	VERY INTENSE	EXTREME	EXTREME

Short-path Summer Solstice Propagation


- SSSP hypothesized by JE1BMJ in his article in Six News (UK Six Metre Group, English translation)
- Tied to Polar mesospheric summer echoes (PMSE)
 - Radar echoes between 80-90 km in altitude from mid May through mid August in the Arctic
 - The peak PMSE height is slightly below the summer mesopause temperature minimum at 88 km, and above the noctilucent cloud (NLC) layer at 83–84 km
- How do you tell the difference between PMSE and Es?

Electron Density of PMSE

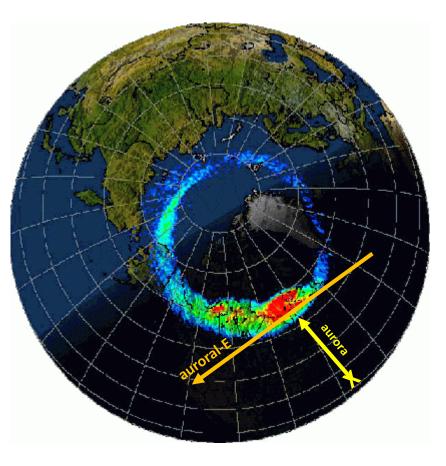
- Ge, Li, Xu, Zhu, Wang, Meng, Ullah and Rauf; Characteristics of the layered polar mesospheric summer echoes occurrence ratio observed by EISCAT VHF 224 MHz radar; Annales Geophysicae; 37, 417-427, 2019
- Max electron densities can be around 1E12 e/m³
 - Critical frequency approximately 9 MHz
 - For low elevation angles, M-factor for a layer at 85 km is around 6 (MUF = M-factor times critical frequency)
- PMSE can support 6m
- Three layers may help per slide 7/bullet 2

Meteor Scatter

2021 Major Meteor Showers (Class I)

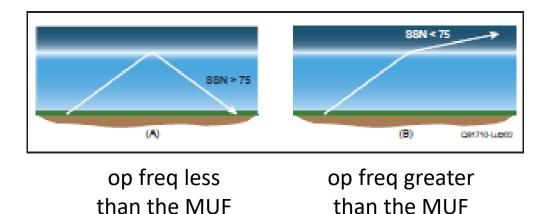
Shower	Activity Period Maximum		Radiant		Velocity	r	Max.	Time	Moon	
		Date	S. L.	R.A.	Dec.	km/s		ZHR		
Quadrantids (QUA)	Dec 28-Jan 07	Jan 03	283.3°	15:20	+49.7°	40.2	2.1	120	0500	19
Lyrids (LYR)	Apr 14-Apr 30	Apr 22	032.5°	18:10	+33.3°	46.8	2.1	18	0400	10
eta Aquarids (ETA)	Apr 20-May 26	May 05	046.2°	22:30	-01.1°	65.5	2.4	60	0400	24
Southern delta Aquarids (SDA)	Jul 17-Aug 12	Jul 30	126.9°	22:42	-16.4°	40.4	3.2	20	0300	21
Perseids (PER)	Jul 22-Aug 23	Aug 12	140.0°	03:13	+58.0°	58.8	2.6	100	0400	04
Orionids (ORI)	Oct 03-Nov 12	Oct 21	207.5°	06:19	+15.6°	66.1	2.5	23	0500	16
Leonids (LEO)	Nov 03-Dec 02	Nov 18	236.0°	10:16	+21.6°	70.0	2.5	15	0500	14
Geminids (GEM)	Nov 13-Dec 22	Dec 14	262°5	07:36	+32.2°	33.8	2.6	120	0100	10
Ursids (URS)	Dec 16-Dec 26	Dec 22	270°5	14:36	+75.3°	33.0	3.0	10	0500	18

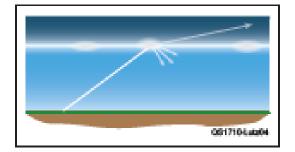
from the American Meteor Society


Use MSK144

- S.L. is solar longitude
 - 0 is spring equinox
 - 90 is summer solstice
 - 180 is autumnal equinox
 - 270 is winter solstice
 - r

- 2.0 is bright
- 3.5 is faint
- ZHR is zenith hourly rate
- Moon is age of the moon in days
 - 0 is new, 7 is first quarter, 15 is full, 22 is last quarter
 - Best when < 10 or > 25


Aurora and Auroral-E

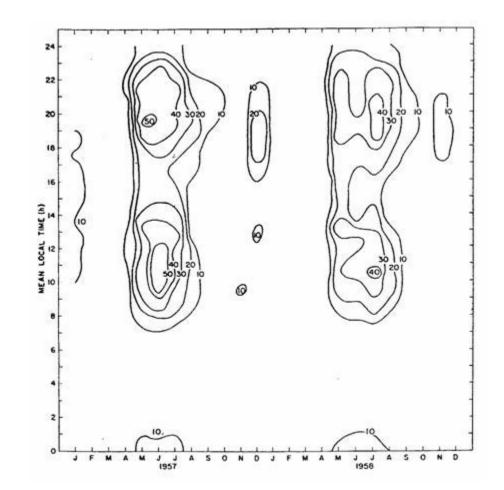

- Aurora can occur when the K index is \geq 5
 - Higher probability when K > 5
 - Point your antenna north-ish
 - Use CW
- Auroral-E
 - Does this happen?
 - If so, is it similar to 15m/10m auroral-E?
 - Late afternoon in the fall months
 - Path is tangential to auroral oval

Ionospheric Scatter

From slide 5, scatter results in more loss

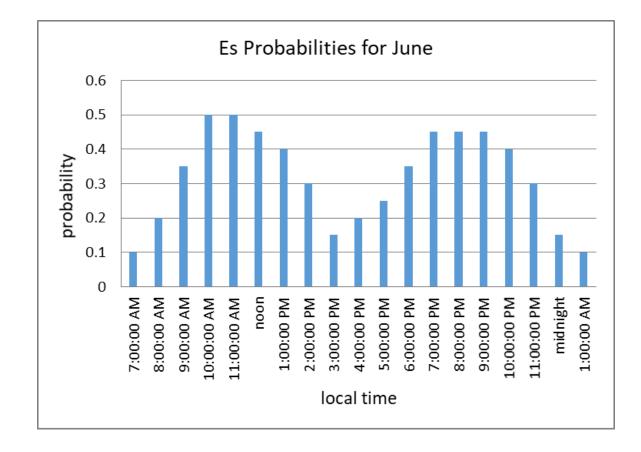
what can really happen

normal view of refraction

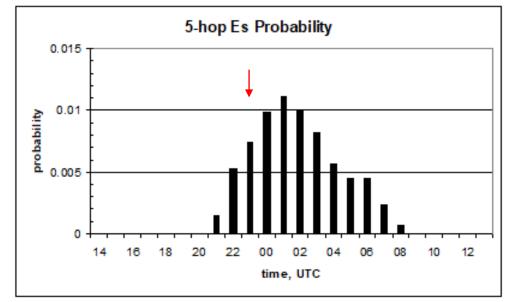

result can be above-the-MUF propagation but with more loss

E Hops

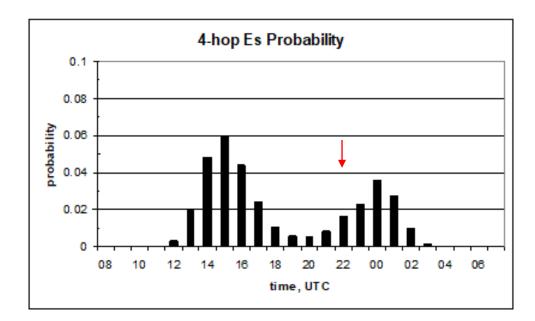
- MUF = M-factor times foE
- Normal E region M-factor is a bit above 5
 - For low elevation angles and a maximum electron density around 105 km
 - Results in a low angle of incidence on the E region
- Thus foE needs to be around 10 MHz for 50 MHz refraction
 - Not very common
- If anywhere, it's at solar max in the equatorial ionosphere around local noon (solar zenith angle near 0°)


Sporadic-E

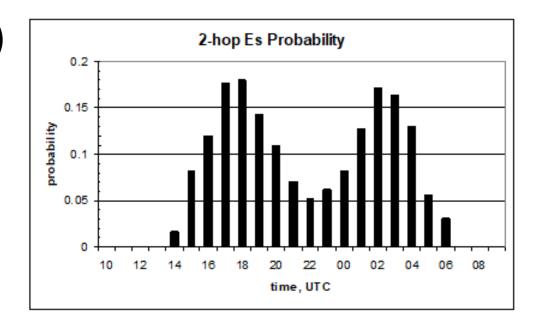
- It's called sporadic-E because we can't predict it
- We know the general pattern with respect to month and local time
- We don't know on which days it will occur
- Summer is best
- Bi-modal probability
 - Late morning (local)
 - Early/late evening (local)
- Bi-modal probability can allow long distance QSOs


Another Look at Sporadic-E Probability

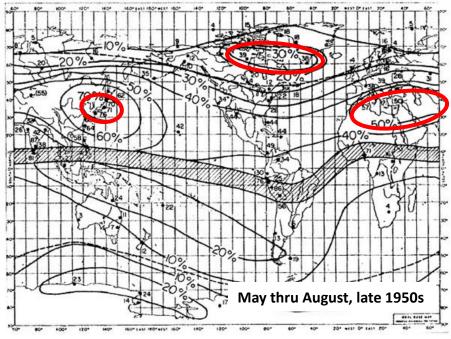
from data on previous slide


Predicting Best Times for Sporadic-E

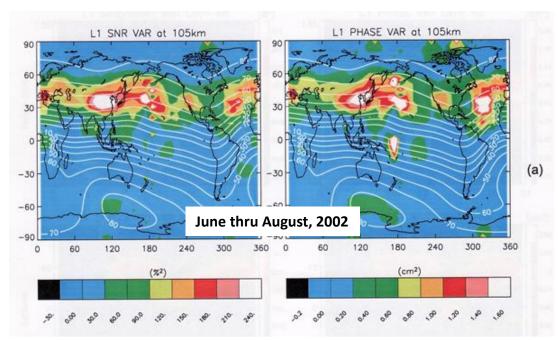
- NØJK (KS) to JA7QVI in early June
 - 9700 km
- Break path into five segments
- Use probabilities on previous slide for each segment vs local time
- Multiply probabilities of the five segments together at each time
- NØJK worked JA7QVI at 2345 UTC on June 4 (2006)


Predicting Best Times for Sporadic-E

- N4KZ (KY) to CT3 in early June
 - 6052 km
- Break path into four segments
- Use probabilities on earlier slide for each segment vs local time
- Multiply probabilities of the four segments together at each time
- N4KZ worked CT3 at 2208 UTC on June 9 (2006)
 - Other Midwest stations confirm two opportunities



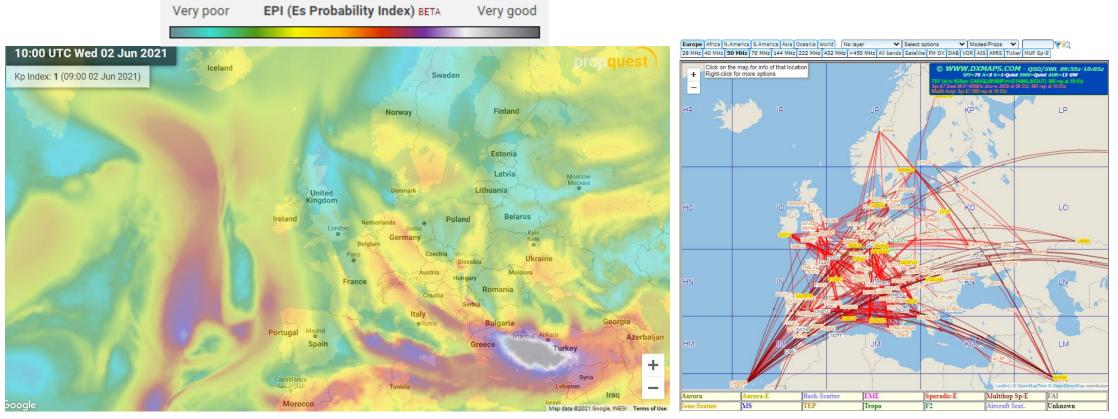
Predicting Best Times for Sporadic-E


- W7 to W2 in late June (Field Day!)
 - 3166 km
- Break path into two segments
- Use probabilities on earlier slide for each segment vs local time
- Multiply probabilities of the two segments together at each time

Change in Sporadic-E Over the Years

H. I. Leighton, A. H. Shapely and E. K. Smith; *The Occurrence of Sporadic E during the IGY*; Central Radio Propagation Laboratory, National Bureau of Standards, Boulder Colorado

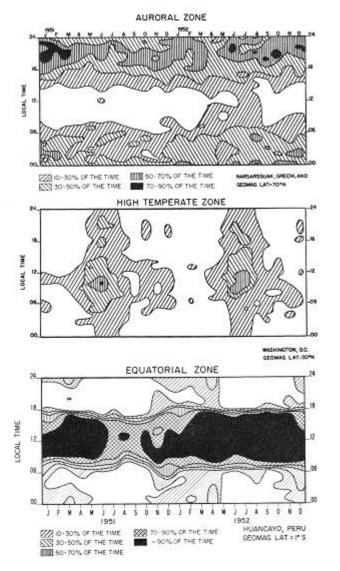
Dong L. Wu, Chi O. Ao, George A. Hajj, Manuel de la Torre Juarez and Anthony J. Mannucci; *Sporadic E morphology from GPS-CHAMP radio occultation*; Journal of Geophysical Research, Vol 110, A01306, doi:10,1029/2004JA010701, 2005


- It appears that Es has shifted west from JA to SE Asia
- North America has shifted, too

But how good is the early data??

Sporadic-E and Weather in the Troposphere

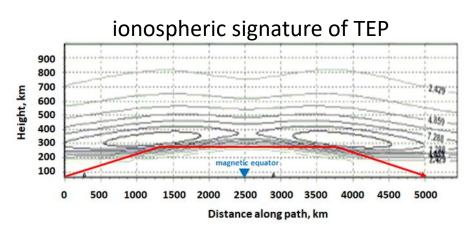
- There appears to be a tie between terrestrial tropospheric weather and sporadic-E
- Recent work in this area by G3YLA and K1YOW (and probably others)
- Jim Bacon G3YLA retired BBC meteorologist
 - Generates a daily Es Prediction Index (EPI)
 - http://propquest.co.uk/map.php
- Joe Dzekevich K1YOW
 - <u>https://hamsci.org/sites/default/files/publications/202011_CQ_Dzekevich_K1YOW_SporadicE.pdf</u>

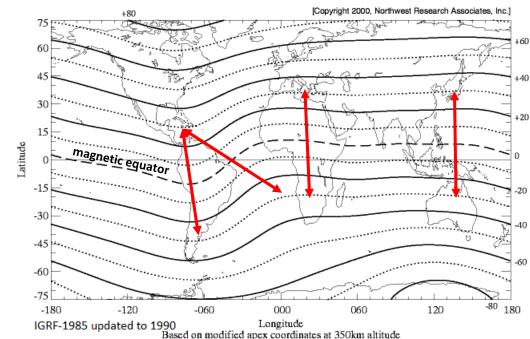

G3YLA's EPI vs dxmaps.com

EPI, June 2, 1000 UTC

dxmaps.com, June 2, 0955-1005 UTC

Sporadic-E by Latitude

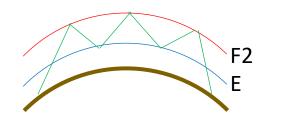

- From Kenneth Davies, Ionospheric Radio, 1990
- Auroral zone Es mostly a nighttime event
- High temperate zone (middle plot) is similar to probabilities on slide 21
- Lots of Es in the equatorial zone around local noon time
 - Any path that crosses the equator around local noon should <u>consider</u> Es

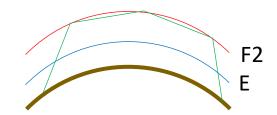

F2 Hops

- MUF = M-factor times foF2
- F2 region M-factor is a bit above 3
 - For low elevation angles and a maximum electron density around 300 km
 - Results in a low angle of incidence on the F2 region
- Thus foF2 needs to be around 16 MHz for 50 MHz refraction
- In the northern hemisphere, this can occur with a high sunspot number (around solar max) in the fall and winter in the late morning and afternoon
- Cycles 19, 21 and 22 were especially good
 - Other cycles at a lower probability
 - Even Cycle 24 had some F2 during the second peak though it was a small cycle
 - There's hope for Cycle 25 maybe only a couple months around solar max
 - Of course the digital modes offer a bit higher probabilities

Trans-Equatorial Propagation

- Extremely long paths across the magnetic equator with no ground reflection – see image below
- Best in the equinox months
- More sunspots help
- Best from late afternoon through early evening

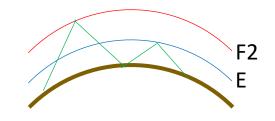




Geomagnetic (350km Apex) Latitudes

most of us in the continental US require a link to TEP – either an F2 hop or an Es hop

Ducting/Chordal Hops

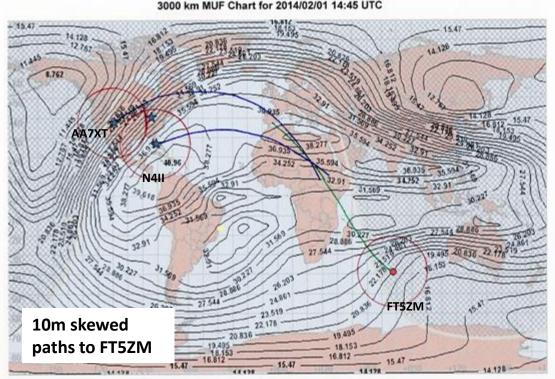


ducting

chordal hop either via Es or F2 (maybe E?)

- Might be tough to discern from regular hops
- Ray tracing may help
 - But the model of the ionosphere is a monthly median model (kind of the average over a month's time frame)

Combos of E and F Hops

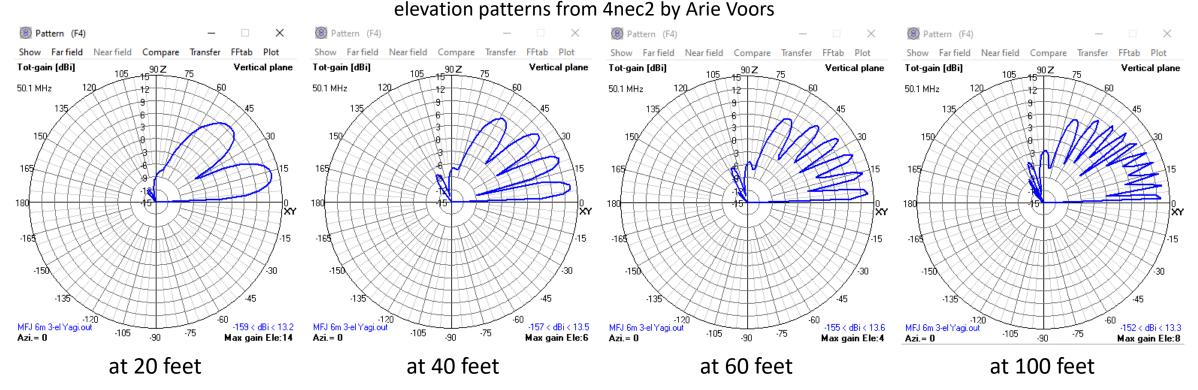

Again, it might be tough to discern from regular hops unless an extremely in-depth analysis is done

Above-the-MUF

- Normally we think the operating frequency needs to be <u>below</u> the MUF see slide 19
- But QSOs do occur when the operating frequency is <u>above</u> the MUF
 - Believed to be due to some form of scatter
- Several equations
 - Wheeler 8 dB loss at 50 MHz when MUF = 40 MHz
 - ITU 23 dB loss at 50 MHz when MUF = 40 MHz
 - Gibson & Bradley 33 dB loss at 50 MHz when MUF = 40 MHz
- Loss due to above-the-MUF propagation may not be as bad as one might think due to minimal absorption on 50 MHz
 - Amount of ionospheric absorption is inversely proportional to (frequency)²
- I believe this is a factor in the advantage of the digital modes on the higher bands

Skewed Paths

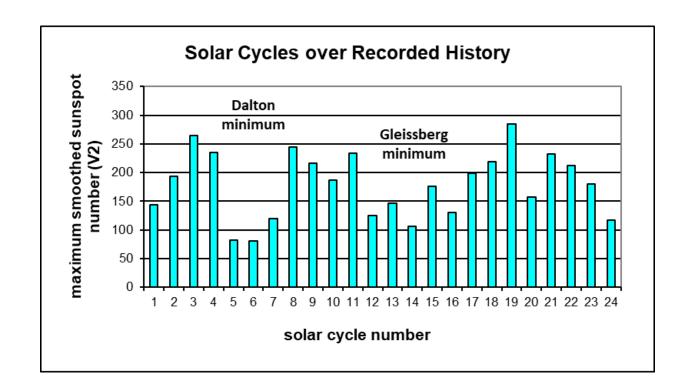
- Most of the time, RF follows a great circle path (gcp)
- If it doesn't, look for electron density gradients that knock the RF off of one gcp and onto another gcp
 - F2 region (especially near the equator)
 - Es
- The FT5ZM DXpedition in 2014 is a great example of skewed paths on 10m
 - <u>https://k9la.us/Skewed Paths to</u> <u>FT5ZM on 10-Meters.pdf</u>


- short gcp from N4II to FT5 is to the southeast
- short gcp from AA7XT to FT5 is to the west
- both pointed to North Africa on 10m the alleged skew point
 - very high electron density and gradients

6m Moon Bounce

- Typical EME path loss on 50 MHz is approximately 243 dB
 - Rough estimate for CW: $Pr = 61.8 (1kW) + 20 (G_T) + 20 (G_R) 243 = -141.2 dBm$
 - MDS: -174 + 27 (500 Hz bw) + 2 (NF) = -145 dBm >> 3.8 dB SNR
 - Rough estimate for JT65: Pr = 61.8 +20 + 20 243 = -141.2 dBm
 - MDS: -174 + 27 + 2 10 (JT65 advantage over CW) = -155 dBm >> 13.8 dB SNR >> smaller antennas acceptable
- <u>http://www.bigskyspaces.com/w7gj/Welcome_to_6m_EME.htm</u>
- <u>https://stationproject.blog/wp-content/uploads/2020/05/2020-April-</u> <u>Tech-Night-Getting-Started-in-EME.pdf</u>

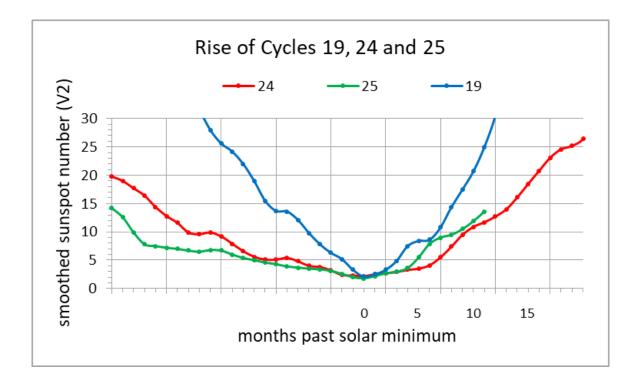
Antenna Considerations


3-Element 6m Yagi Patterns

- W2PV believed the best height for an HF Yagi was 1.5λ that's 30 feet on 6m
- High antenna on 6m can be advantageous go for a stack of 6m Yagis
 - Energy at lower angles critical on 6m could take advantage of a higher MUF

Cycle 25 Status

Recorded History



Cycle 24 was the smallest in our lifetimes and the 4th smallest in recorded history

Critical question – will Cycle 25 get us out of the third period of small cycles?

The Rise of Cycle 25

- Data from Cycles 1 thru 24 show that a big cycle rises faster than a small cycle
- After 11 months of data, Cycle 25 is rising a bit faster than Cycle 24
- So far June 2021 has been good for sunspots

Books, Papers, Websites, Videos, Columns

- <u>https://www.k5nd.net/wp-content/uploads/2020/08/Six-Meters-eBook-V5.pdf</u>
- K6MIO papers (and others) at https://www.qsl.net/wa3mej/Articles/Library.html
- WB2AMU/WB6NOA, VHF Propagation A Practical Guide for Radio Amateurs, CQ, 2004
- UK Six Meter Group at https://www.uksmg.org/landing.php
- EI7GL blog at https://ei7gl.blogspot.com/
- GOKYA, Radio Propagation Explained, RSGB, 2016
- Propagation chapters of the ARRL Handbook and the ARRL Antenna Book
- The World Above 50 MHz column, NØJK, QST
- VHF-UHF Contesting! column, NØJK, NCJ
- VHF PLUS column, N4DTF, CQ magazine
- Recent G3XTT presentation at <u>https://www.youtube.com/watch?v=TVJDWJwOmhQ</u>

I'm sure there are many more sources for 6m propagation and the various modes

Summary

- Many modes on 6m
 - Probably because 6m is not like HF, where most propagation is via E and F modes
- Some modes are easy
- Some modes are more difficult
 - Now that's an understatement $\ensuremath{\textcircled{\odot}}$
- This is like Amateur Radio in general many different aspects of 6m propagation to keep you interested and busy